Scalability in Model Checking

CS60030 FORMAL SYSTEMS

PALLAB DASGUPTA,

FNAE, FASc,

A K Singh Distinguished Professor in Al, **Dept of Computer Science & Engineering Indian Institute of Technology Kharagpur**

Email: pallab@cse.iitkgp.ac.in

Web: http://cse.iitkgp.ac.in/~pallab

Handling Large State Spaces

State Explosion

- If M has k state variables, then it has 2^k states
- Not all these states are reachable
- Not all state variables are relevant for a property we wish to prove

Representation

- Symbolic we will never actually generate the explicit state space
- Reduced throw out those state variables that are inconsequential

Decision strategies

- Proving the property on an abstraction of M may be sufficient
- Proving the property assuming all states are reachable may be sufficient

More on scalability

- BDD, SAT, SMT
 - Not good enough for many of the state spaces where we wish to use formal methods

OPTIONS (we will elaborate each of these)

- BOUNDED SEARCH
 - In many cases we may know an upper-bound on the length of potential counter-examples
 - We can unfold only up to that depth
- INDUCTION
 - We can inductively prove certain properties with limited unfolding
- ABSTRACTION REFINEMENT
 - We reduce the complexity of the STS by dropping some of its variables and prove that the abstraction is safe

BOUNDED MODEL CHECKING

Bounded Model Checking

- Represent sets of states and the transition relation as Boolean logic formulas
- Instead of computing the fixpoints, unroll the transition relation up to certain fixed bound and search for violations of the property within that bound

Transform this search to a Boolean satisfiability problem and solve it using a SAT solver

Example: Bound=2

Clauses from Property: F(r1 \land (\neg Xg1 \lor \neg XXg1))

 Z^1 : $r1^0 \land \neg g1^1$

SAT Check: Is $Z^1 \wedge I \wedge C_1^1 \wedge C_2^1$ satisfiable?

Answer: No, since Z¹ conflicts with C₂¹

Is there a witness of length=2?

Clauses from Transition Relation:

 C_1^1 : $r2^0 \land \neg r1^0 \land \neg g1^0 \Rightarrow g2^1$

 C_2^1 : $r1^0 \Rightarrow g1^1$

Clauses from Initial State:

I: $g2^0 \land \neg g1^0$

Example: Bound=3

Is there a witness of length=3?

Clauses from Transition Relation:

C₁¹, C₂¹: from previous iteration

 C_1^2 : $r2^1 \land \neg r1^1 \land \neg g1^1 \Rightarrow g2^2$

 C_2^2 : $r1^1 \Rightarrow g1^2$

Clauses from Initial State:

I: $g2^0 \land \neg g1^0$

Clauses from Property: F(r1 \land (\neg Xg1 \lor \neg XXg1))

Z²: $(r1^{0} \wedge (\neg g1^{1} \vee \neg g1^{2})) \vee (r1^{1} \wedge \neg g_{1}^{2})$

SAT Check: Is $\mathbb{Z}^2 \wedge \mathbb{I} \wedge \mathbb{C}_1^1 \wedge \mathbb{C}_2^1 \wedge \mathbb{C}_1^2 \wedge \mathbb{C}_2^2$ satisfiable?

Yes: Witness: $r1^0 = 1$, $r1^1 = 0$, $g1^1 = 1$, $g1^2 = 0$, rest are don't cares

Conclusion: We have found a bug!!

What Can We Guarantee?

Note that we are checking only for bounded paths (paths which have at most k+1 distinct states)

- So if the property is violated by only paths with more than k+1 distinct states, we would not find a counter-example using bounded model checking
- Hence if we do not find a counter-example using bounded model checking we are not sure that the property holds

However, if we find a counter-example, then we are sure that the property is violated since the generated counter-example is never spurious (i.e., it is always a concrete counter-example)

Proving Correctness

If we can find a way to figure out when we should stop then we would be able to provide guarantee of correctness.

There is a way to define a *diameter* of a transition system so that a property holds for the transition system if and only if it is not violated on a path bounded by the diameter.

So if we do bounded model checking using the diameter of the system as our bound, then we can guarantee correctness if no counter-example is found.

Formal Methodology

Bound on path length k

Clauses describing the system M:

- Initial state : I(s₁)
- Unrolled transition relation : $\Lambda_{i=1..k-1}$ T(s_i, s_{i+1})

Loop clause
$$loop_k = V_{i=1..k}$$
 $T(s_k, s_i)$

[f]_{i,k} means that temporal property f is true at runs starting from s_i and provable in k BMC iterations.

For the property f to hold on the system $M \wedge [f]_{1,k}$ must be valid.

Translation of LTL to SAT

Xf is true at state s_i , iff f is provable starting from s_{i+1}

$$[Xf]_{i,k} = (i < k) \wedge [f]_{i+1,k}$$

Ff is true in state s_i, iff f is provable within k iterations from some future state s_j

$$[Ff]_{ik} = V_{j=i..k}[f]_{j,k}$$

Gf is true in state s_i, iff f is true at all states reachable in k iterations and all paths loop

$$[Gf]_{i,k} = \Lambda_{j=i..k} [f]_{j,k} \Lambda loop_k$$

f U g is true at s_i, iff g is provable from some state reachable within k iterations and f is provable from all preceding states within k iterations

$$[fUg]_{i,k} = V_{j=i..k}([g]_{j,k} \Lambda \Lambda_{n=i..j-1}[f]_{n,k})$$

ABSTRACTION REFINEMENT

Cone-of-influence reduction

Two state variables

b and d

The value of *f* is influenced by:

- Input a
- State S1

The value of g is influenced by:

- Input b
- State S2
- State S1, because S2 is influenced by it
- Input a, because S1 is influenced by it

Computable using static analysis

Abstraction

Cone-of-influence reduction with respect to a property does not loose any relevant information

The problem is that quite often COI is not enough

Abstractions further reduce the size of the state machine

What kind of abstractions do we want?

- Bugs must not escape detection.
- This is guaranteed by the following constraint:
 - Any run which exists in the original state machine must also exist in the abstract state machine
- This is achieved by existential abstraction of the transition relation

Existential Abstraction

In this example, we eliminate x_2

- Let h(s) denote the abstract state corresponding to a state s in the original machine
- Existential abstraction:

$$T(s_a, s_b) \Rightarrow T'(h(s_a), h(s_b))$$

• In other words:

$$T'(s_i, s_j) \Rightarrow \exists s_a, s_b T(s_a, s_b)$$
 such that
 $h(s_a) = s_i$ and $h(s_b) = s_j$

Existential Abstraction

Corresponding to every run in the original state machine, we have a run in the abstract state machine

- Therefore counterexamples in the original machine (if any) are preserved in the abstract state machine
- If a property holds on the abstract state machine, then it also holds in the original state machine

Problem: A counterexample found in the abstract state machine is not necessarily real

False counterexample

Consider the property

$$G(x_1 \Rightarrow G(x_1))$$

- Whenever x₁ goes high, it stays high
- This is true in the original state machine (look at the reachable states only)
- But it is false in the abstract state m/c

Abstraction Refinement

Checking the Counterexample

Counterexample: (c₁, ...,c_m)

• Each c_i is an assignment to the set of remaining state variables.

Concrete traces corresponding to the counterexample:

Abstraction/Refinement with conflict analysis

- Simulate counterexample on concrete model with SAT
- If the instance is unsatisfiable, analyze conflict
- Make visible one of the variables in the clauses that lead to the conflict

Source: Chauhan, Clarke, Kukula, Sapra, Veith, Wang, FMCAD 2002

Why do we get spurious counterexample?

Problem: Deadend and Bad States are in the same abstract state.

Solution: Refine abstraction function.

The sets of Deadend and Bad states should be separated into different abstract states.

Refinement: h'

$$\varphi_D = I(s_1) \wedge \left(\bigwedge_{i=1}^{f-1} R(s_i, s_{i+1}) \right) \wedge \left(\bigwedge_{i=1}^{f} h(s_i) = c_i \right)$$

Refinement as Separation

<u>Refinement</u>: Find subset U of I that separates between all pairs of dead-end and bad states. Make them visible.

U must be minimal!

Refinement as Separation

Refinement: Find subset U of I that separates between all pairs of dead-end and bad states. Make them visible.

U must be minimal!

Refinement as Separation

The state separation problem

Input: Sets D, B

Output: Minimal $U \in I$ s.t.:

 $\forall d \in D, \forall b \in B, \exists u \in U. \ d(u) \neq b(u)$

The refinement h' is obtained by adding U to V.

Separation methods

ILP-based separation

- Minimal separating set.
- Computationally expensive.

Decision Tree Learning based separation.

- Not optimal.
- Polynomial.