Scalability in Model Checking

CS60030 FORMAL SYSTEMS

PALLAB DASGUPTA,

FNAE, FASc,
A K Singh Distinguished Professor in Al, Dept of Computer Science \& Engineering Indian Institute of Technology Kharagpur Email: pallab@cse.iftkgp.ac.in Web: http://cse.itkgp.ac.in/~pallab

Handling Large State Spaces

State Explosion

- If M has k state variables, then it has 2^{k} states
- Not all these states are reachable
- Not all state variables are relevant for a property we wish to prove

Representation

- Symbolic - we will never actually generate the explicit state space
- Reduced - throw out those state variables that are inconsequential

Decision strategies

- Proving the property on an abstraction of M may be sufficient
- Proving the property assuming all states are reachable may be sufficient

More on scalability

- BDD, SAT, SMT
- Not good enough for many of the state spaces where we wish to use formal methods

OPTIONS (we will elaborate each of these)

- BOUNDED SEARCH
- In many cases we may know an upper-bound on the length of potential counter-examples
- We can unfold only up to that depth
- INDUCTION
- We can inductively prove certain properties with limited unfolding
- ABSTRACTION - REFINEMENT
- We reduce the complexity of the STS by dropping some of its variables and prove that the abstraction is safe

BOUNDED MODEL CHECKING

Bounded Model Checking

- Represent sets of states and the transition relation as Boolean logic formulas
- Instead of computing the fixpoints, unroll the transition relation up to certain fixed bound and search for violations of the property within that bound
- Transform this search to a Boolean satisfiability problem and solve it using a SAT solver

Example: Bound=2

Is there a witness of length=2?
Clauses from Transition Relation:

$$
\begin{aligned}
& C_{1}^{1}: r 2^{0} \wedge \neg r 1^{0} \wedge \neg g 1^{0} \Rightarrow g 2^{1} \\
& C_{2}^{1}: r 1^{10} \Rightarrow g 1^{1}
\end{aligned}
$$

Clauses from Initial State:
$\mathrm{l}: \mathrm{g} 2^{0} \wedge \neg \mathrm{~g} 1^{0}$

Clauses from Property: $F(r 1 \wedge(\neg X g 1 \vee \neg X X g 1))$

$$
Z^{1}: r 1^{0} \wedge \neg g 1^{1}
$$

SAT Check: Is $Z^{1} \wedge I \wedge C_{1}{ }^{1} \wedge C_{2}{ }^{1}$ satisfiable? Answer: No, since Z^{1} conflicts with $C_{2}{ }^{1}$

Example: Bound=3

Is there a witness of length=3?

Clauses from Transition Relation:
$\mathrm{C}_{1}{ }^{1}, \mathrm{C}_{2}{ }^{1}$: from previous iteration $\mathrm{C}_{1}{ }^{2}: \mathrm{r}^{1} \wedge \neg \mathrm{r}^{1} \wedge \neg \mathrm{~g} 1^{1} \Rightarrow \mathrm{~g} 2^{2}$
$\mathrm{C}_{2}{ }^{2}: \mathrm{r}^{1} \Rightarrow \mathrm{~g} 1^{2}$

Clauses from Initial State:

I: $\mathrm{g} 2^{0} \wedge \neg \mathrm{~g} 1^{0}$
Clauses from Property: $\mathrm{F}(\mathrm{r} 1 \wedge(\neg \mathrm{Xg} 1 \vee \neg \mathrm{XXg} 1))$
$Z^{2}:\left(r 1^{0} \wedge\left(\neg g 1^{1} \vee \neg g 1^{2}\right)\right) \vee\left(r 1^{1} \wedge \neg g_{1}{ }^{2}\right)$
SAT Check: Is $\mathrm{Z}^{2} \wedge \mathrm{I} \wedge \mathrm{C}_{1}{ }^{1} \wedge \mathrm{C}_{2}{ }^{1} \wedge \mathrm{C}_{1}{ }^{2} \wedge \mathrm{C}_{2}{ }^{2}$ satisfiable?
Yes: Witness: $\mathrm{r} 1^{0}=1, \mathrm{r} 1^{1}=0, \mathrm{~g} 1^{1}=1, \mathrm{~g} 1^{2}=0$, rest are don't cares
Conclusion: We have found a bug!!

What Can We Guarantee?

Note that we are checking only for bounded paths (paths which have at most $k+1$ distinct states)

- So if the property is violated by only paths with more than $\mathrm{k}+1$ distinct states, we would not find a counter-example using bounded model checking
- Hence if we do not find a counter-example using bounded model checking we are not sure that the property holds

However, if we find a counter-example, then we are sure that the property is violated since the generated counter-example is never spurious (i.e., it is always a concrete counter-example)

Proving Correctness

If we can find a way to figure out when we should stop then we would be able to provide guarantee of correctness.

There is a way to define a diameter of a transition system so that a property holds for the transition system if and only if it is not violated on a path bounded by the diameter.

So if we do bounded model checking using the diameter of the system as our bound, then we can guarantee correctness if no counter-example is found.

Formal Methodology

Bound on path length k

Clauses describing the system M :

- Initial state: l(s,
- Unrolled transition relation: $\bigwedge_{i=1 . . k-1} \mathrm{~T}\left(\mathbf{s}_{\mathrm{i}}, \mathrm{s}_{\mathrm{i}+1}\right)$

Loop clause $\quad \operatorname{loop}_{k}=\mathrm{V}_{\mathrm{i}=1 . . \mathrm{k}} \mathrm{T}\left(\mathrm{s}_{\mathrm{k}}, \mathrm{s}_{\mathrm{i}}\right)$
$\left[f_{j, k}\right.$ means that temporal property f is true at runs starting from s_{i} and provable in k BMC iterations.

For the property f to hold on the system $\mathrm{M} \wedge\left[f_{1, k}\right.$ must be valid.

Translation of LTL to SAT

Xf is true at state s_{i}, iff f is provable starting from $\mathrm{s}_{\mathrm{i}+1}$

$$
[X f]_{\mathrm{i}, \mathrm{k}}=(\mathrm{i}<k) \wedge[f]_{\mathrm{i}+1, \mathrm{k}}
$$

Ff is true in state s_{i}, iff f is provable within k iterations from some future state s_{j}

$$
[F f]_{\mathrm{ik}}=V_{j=i . \mathrm{i}}[\mathrm{f}]_{\mathrm{j}, \mathrm{k}}
$$

Gf is true in state s_{i}, iff f is true at all states reachable in k iterations and all paths loop

$$
[G f]_{i, k}=\Lambda_{j=i . . k}[f]_{j, k} \Lambda \operatorname{loop}_{k}
$$

$f U g$ is true at s_{i}, iff g is provable from some state reachable within k iterations and f is provable from all preceding states within k iterations

$$
[f U g]_{i, k}=V_{j=i . . k}\left([g]_{j, k} \wedge \Lambda_{n=i . j-j-1}[f]_{n, k}\right)
$$

ABSTRACTION REFINEMENT

Cone-of-influence reduction

Two state variables
-b and d
The value of f is influenced by:

- Input a
- State S1

The value of g is influenced by:

- Input b
- State S2
- State S1, because S2 is influenced by it
- Input a, because S1 is influenced by it

Computable using static analysis

Abstraction

Cone-of-influence reduction with respect to a property does not loose any relevant information

- The problem is that quite often COI is not enough

Abstractions further reduce the size of the state machine

What kind of abstractions do we want?

- Bugs must not escape detection.
- This is guaranteed by the following constraint:
- Any run which exists in the original state machine must also exist in the abstract state machine
- This is achieved by existential abstraction of the transition relation

Existential Abstraction

In this example, we eliminate x_{2}

- Let $\mathrm{h}(\mathrm{s})$ denote the abstract state corresponding to a state s in the original machine
- Existential abstraction:

$$
\mathrm{T}\left(\mathbf{s}_{\mathrm{a}}, \mathrm{~s}_{\mathrm{b}}\right) \Rightarrow \mathrm{T}^{\prime}\left(\mathrm{h}\left(\mathbf{s}_{\mathrm{a}}\right), \mathrm{h}\left(\mathbf{s}_{\mathrm{b}}\right)\right)
$$

- In other words:

$$
\begin{array}{r}
\mathrm{T}^{\prime}\left(\mathrm{s}_{\mathrm{i}}, \mathrm{~s}_{\mathrm{j}}\right) \Rightarrow \exists \mathrm{s}_{\mathrm{a}}, \mathrm{~s}_{\mathrm{b}} \mathrm{~T}\left(\mathrm{~s}_{\mathrm{a}}, \mathrm{~s}_{\mathrm{b}}\right) \text { such that } \\
\mathrm{h}\left(\mathrm{~s}_{\mathrm{a}}\right)=\mathrm{s}_{\mathrm{i}} \text { and } \mathrm{h}\left(\mathrm{~s}_{\mathrm{b}}\right)=\mathrm{s}_{\mathrm{j}}
\end{array}
$$

$$
\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
$$

Existential Abstraction

Corresponding to every run in the original state machine, we have a run in the abstract state machine

- Therefore counterexamples in the original machine (if any) are preserved in the abstract state machine
- If a property holds on the abstract state machine, then it also holds in the original state machine

Problem: A counterexample found in the abstract state machine is not necessarily real

False counterexample

Consider the property

$$
G\left(x_{1} \Rightarrow G\left(x_{1}\right)\right)
$$

- Whenever x_{1} goes high, it stays high
- This is true in the original state machine
(look at the reachable states only)

01

$$
\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
$$

- But it is false in the abstract state m / c

Abstraction Refinement

Checking the Counterexample

Counterexample: ($\mathbf{c}_{1}, \ldots, \mathbf{c}_{\mathrm{m}}$)

- Each c_{i} is an assignment to the set of remaining state variables.

Concrete traces corresponding to the counterexample:

Abstraction/Refinement with conflict analysis

- Simulate counterexample on concrete model with SAT
- If the instance is unsatisfiable, analyze conflict
- Make visible one of the variables in the clauses that lead to the conflict

Source: Chauhan, Clarke, Kukula, Sapra, Veith, Wang, FMCAD 2002

Why do we get spurious counterexample?

Refinement

Problem: Deadend and Bad States are in the same abstract state.
Solution: Refine abstraction function.
The sets of Deadend and Bad states should be separated into different abstract states.

Refinement

Refinement

Refinement

Refinement as Separation

Refinement: Find subset U of I that separates between all pairs of dead-end and bad states. Make them visible.

U must be minimal !

Refinement as Separation

Refinement: Find subset U of I that separates between all pairs of dead-end and bad states. Make them visible.

U must be minimal !

Refinement as Separation

The state separation problem
Input: Sets D, B
Output: Minimal $U \in I$ s.t.:

$$
\forall d \in D, \forall b \in B, \exists u \in U . \quad d(u) \neq b(u)
$$

The refinement h ' is obtained by adding U to V .

Separation methods

ILP-based separation

- Minimal separating set.
- Computationally expensive.

Decision Tree Learning based separation.

- Not optimal.
- Polynomial.

